Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage
نویسندگان
چکیده
Mesostructure engineering is a potential avenue towards the property control of coordination polymers in addition to the traditional structure design on an atomic/molecular scale. Mesoframes, as a class of mesostructures, have short diffusion pathways for guest species and thus can be an ideal platform for fast storage of guest ions. We report a synthesis of Prussian Blue analogue mesoframes by top-down etching of cubic crystals. Scanning and transmission electron microscopy revealed that the surfaces of the cubic crystals were selectively removed by HCl, leaving the corners, edges, and the cores connected together. The mesoframes were used as a host for the reversible insertion of sodium ions with the help of electrochemistry. The electrochemical intercalation/de-intercalation of Na+ ions in the mesoframes was highly reversible even at a high rate (166.7 C), suggesting that the mesoframes could be a promising cathode material for aqueous sodium ion batteries with excellent rate performance and cycling stability.
منابع مشابه
Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries.
A structure optimized Prussian blue analogue Na1.76Ni0.12Mn0.88[Fe(CN)6]0.98 (PBMN) is synthesized and investigated. Coexistence of inactive Ni(2+) (Fe-C≡N-Ni group) with active Mn(2+/3+) (Fe-C≡N-Mn group) balances the structural disturbances caused by the redox reactions. This cathode material exhibits particularly excellent cycle life with high capacity (118.2 mA h g(-1)).
متن کاملSodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries.
A modified Prussian blue analogue, Na(2)Zn(3)[Fe(CN)(6)](2)·xH(2)O, was investigated as a positive electrode material. Utilizing a well-defined channel structure, the compound exhibits a clear electrochemical activity at around 3.5 V vs. Na/Na(+) with a reversible capacity of 56.4 mA h g(-1) and good cycle life.
متن کاملAll-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite
Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer f...
متن کاملBinder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملTunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.
The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018